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HUFFMAN-CODED PULSE COMPRESSION WAVEFORMS

INTRODUCTION

Modern radars generally incorporate pulse compression waveforms to avoid transmitting a pulse
having a large peak power which can result in waveguide arcing. Pulse compression waveforms enable
one to transmit a long pulse to obtain sufficient energy on a target for detection and to simultaneously
obtain the desired range resolution. This is achieved by modifying the time-bandwidth product (TB) of
the transmitted waveform. A larger transmit time duration T allows sufficient energy on the target for
detection, while 1/B determines the resolution of the compressed pulse if no mismatch occurs. The
desired signal bandwidth is generally obtained by modulating the signal's phase or frequency while
maintaining a constant maximum pulse amplitude. This is illustrated by the linear chirp signal, pseu-
dorandom phase codes, and polyphase pulse compression waveforms.

A desirable property of the compressed pulse is that it have low sidelobes to prevent a weak target
from being masked in the time sidelobes of a nearby stronger target. It is generally also desired that
the compressed pulse does not significantly degrade when the return signal has been doppler shifted
due to target motion. For the commonly used chirp signal, the sidelobes are reduced by weighting the
received signal which results in a mismatch loss of approximately 1 dB, and a broadening of the pulse-
width due to the band-limiting associated with the weighting. The polyphase codes and the binary
codes may also be weighted, if desired, to increase peak-to-sidelobe levels.

The Huffman-coded waveform [1 to 51 results in an ideal compressed pulse having no sidelobes
except for the unavoidable sidelobe at either end of the compressed pulse. However, the Huffman
waveform consists of code elements which vary in amplitude as well as in phase. Because of the ampli-
tude fluctuations, the waveforms were not previously very practical. However, with the increased utili-
zation of solid-state transmitters and the ability to switch the transmitters or the power transistors on
and off of a transmitter bus, there has been a recent interest in investigating the properties and perfor-
mance capabilities of the Huffman codes.

In this report we describe a general waveform synthesis procedure, and the synthesis of Huffman
codes for a desired compressed pulse. For an N-element code, there are 2 N-1 different uncompressed
pulses having the same compressed pulse. Procedures are described for selecting an efficient Huffman
code in terms of transmitted power, and the Huffman codes are compared with a polyphase code and a
binary shift-register code. The effects of errors on the Huffman code sidelobes are also investigated.

WAVEFORM SYNTHESIS AND HUFFMAN CODES

A. Waveform Synthesis from a Known Compressed Pulse

We consider in the following discussion a coded transmit waveform consisting of N-subpulses
which can vary in both phase and amplitude from subpulse to subpulse. This is exemplified by Barker-
coded waveforms, pseudorandom binary shift-register codes, and polyphase codes. It is assumed that
on reception the waveform is digitized so that an inphase I and a quadrature Q sample, or equivalently
an amplitude and a phase sample, are obtained for each subpulse. This simplifies the description of the
waveforms and allows us to conveniently describe the time sequence by using z-transforms. Accord-
ingly, we denote the return sequence by E(z) which is given by

Manuscript approved February 7, 1985.
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EWz = ao + alz- 1 + a2Z-2 + ... + aNZ-(N- 1), (1)

where a, is the complex value which specifie's the amplitude and phase of the i1 h subpulse.

A filter matched to this sequence, M(z), is then given by
N-) a_.1 '2 z + a 3 Z-2 + ... + a~ IZ-(N- 1). (2)

The output of the matched filter is given by

GWz = EWzMWz (3)
which can be represented by

GWz = 90 + g1Z_1 + g2z-2 + .. + gN1 Z-(Nl') + . + 92(N- )z-2(N1), (4)
where g, denotes the samples of the compressed waveform.

Substituting Eqs. (1) and (2) in Eq. (3), we obtain

G(z) = (aO + alz-1 + ... + a~z )(a* I + a* 2 Z' . ~(l) (5)
Equation (5) can be written as

GWz - z-(N1) (aO + alz-1 + ... + aNlz-(N-1)) (a* + aiz + ... + a* ±(Nl))

- Z -(N-1) EWz E*(1/z*). (6)
Next, we express the z-plane zeros of E(z) in factored form as

N-1

and note from Eqs. (3) and (6) that the factored zeros of M(z) may be expressed as
N-1

The z-plane is related to the complex S-plane by the relation

where T denotes the sampling interval or the time duration of each subpulse. From Eq. (9) it is
observed that the roots of M(z) given by 1/z4 are equal to the reciprocal amplitude of the roots zi of
E (z, and the phase angles of the roots zi and 1/4l are the same. In summary, the zeros of the output
function G (z occur in related pairs which are in the z-plane at the same angle but are reciprocal in
amplitude. For an input N-pulse sequence there are N-I such pairs of zeros.

The upshot of these relations is that the generation of the specified compressed pulse is not
uniquely defined but can be accomplished by selection of either zero of each zero pair. There are 2 N-1
possible choices of z-plane zeros that can be selected to produce the same compressed pulse. From
each given choice of (N - 1) zeros, a different input sequence E(z) can be determined from

E kz) -k(N- 1) Nl (Z - z,), (10)
I-1

where k is an energy normalization constant. The resulting coefficients of the polynomial in z-1

specify the amplitude and the phase of the uncompressed input waveform subpulses.

These procedures are next illustrated for the well-known Barker codes having a peak-to-sidelobe
power ratio that is equal to or greater than NA The compressed pulse for the 13-element Barker code

2
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is shown in Fig. 1 (a) on a voltage scale. From the z-transform of this response, the zero locations were
determined and are shown in Fig. 1(b). It is seen that there are 12 pairs of zeros and thus 212 different
input waveforms which, when match-filtered, produce the same compressed pulse shown in Fig. l(a).
Each of the zeros comprising a pair are related to each other as being conjugate reciprocal zeros. For a
given selection of zeros the input waveform is found from the coefficients of the polynomial resulting
from performing the multiplication in Eq. (10).

13

SAMPLE NUMBER

Fig. 1(a) - Compressed pulse for a
13-element Barker code

* 00 --

-2 -1 o 1*0~~~~~~~~~

Fig. I (b)z -plane zero locations for a compressed
13-element Barker code

This can be efficiently and more accurately achieved using fast Fourier transform (FFT) algo-
rithms when N becomes very large [6]. The particular set of zeros indicated by the filled-in circles
corresponds to a constant amplitude binary waveform which is the well-known 13-element Barker code.
In general, any other selection of zeros would result in an input waveform which varies in both ampli-
tude and phase from subpulse to subpulse.

In Fig. 2 we show, as another example, the zeros of a compressed pulse for a four-element gen-
eralized Barker code making use of a sextic alphabet [71 whose elements consist of powers of
exp(iir/3).

B. Huffman Codes

Huffman considered the idealized compressed pulse which contains no sidelobes except the un-
avoidable sidelobes at either end of the compressed pulse. The end sidelobe-level is a design parame-
ter, and a compressed 64-element, zero-doppler Huffman code is illustrated in Fig. 3 for a relative
sidelobe amplitude level of 0.1/64 V in voltage or -56 dB.

From Eq. (4) the z-transform of the compressed Huffman-coded waveform, which has been nor-
malized to unity at the peak, takes the simple quadratic form

G(z) = s + z-(N-1) + SZ-2(N-1) = S(Z-2(N-1) + Z-(N-1)/S + 1), (11)
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Fig. 2 - z-plane zero locations for a compressed
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Fig. 3 - Compressed 64-element Huffman-coded waveform

where s is the normalized sidelobe voltage (that can be positive or negative). The roots of this equa-
tion lie in the z-plane at intervals of 2r/r(N-1) on two circles whose radii R and R-1 are given by

[ 1 ± (I | 1 _111/2 (N-i)
(12)

Thus, the distinguishing feature of the zeros of the compressed Huffman code, in contrast to the other
codes, is that they are on two circles whose radii are reciprocal of each other at regularly spaced inter-
vals of 2ir/(N - 1) radians.

The design of a Huffman code consists of specifying the number of code elements N, the
sidelobe level s, and the particular choice of z-plane zeros which results from choosing one zero from
each of the 2 N-1 pairs. In general, for given N and s, the amplitude as well as the phase of each
resulting uncompressed code subpulse varies with the different choice of z-plane zeros.

DESIGN OF EFFICIENT HUFFMAN CODES

Selecting the zero pattern of G(z) in a random manner to determine the input-coded waveform
generally results in codes which vary considerably in amplitude from subpulse to subpulse. This
represents a loss in terms of the power that could be transmitted at the maximum level. We define an
efficiency factor E as the ratio of the power represented by a given Huffman-coded waveform to the
power that results from transmitting a constant envelope waveform having a value equal to the largest
subpulse value. This can be written as

N-i
I, Iai12

E N i 2 (13)
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Although stated differently, this definition is equivalent to the definition of Huffman and Ackroyd
except that the maximum value of E is normalized to unity.

Ackroyd [5] proposed a method for improving the efficiency of a Huffman code based on a paper
by Schroeder [81 whereby the efficiency of a waveform is improved by modifying the phase spectrum of
the waveform. In particular it was found that waveforms having a high FM content tended to be effi-
cient. Accordingly, Ackroyd cleverly determined which zero to use in each pair by noting that the
pulse spectrum due to the zeros changes by plus or minus ir, depending on whether the zero is inside
or outside the unit circle, as one traverses the unit circle in the vicinity of the zero-pair. Ackroyd sug-
gested that the desired zero selection could be determined by using the desired phase-spectral function
as an input to a delta-modulator which provides a staircase approximation to the phase spectrum in step
sizes of plus or minus 7r. By noting the polarity of the staircase function steps, one could identify the
appropriate zero of each zero pair.

The desired phase spectrum is given by Ackroyd [51, in our notation, as

arg C, = arg C0 -orn 2 /N + irn n = 0, 1, ... N-1, (14)

where the C, represents the Fourier coefficients of the waveform. Ackroyd [51 states that Co is arbi-
trary. However, it will be shown later that C0 is not arbitrary in terms of the achievable efficiency. We
mention at this juncture that the desirable phase characteristic given by Schroeder is very similar to the
phase characteristic used in the P3 and P4 polyphase-coded waveforms devised by Lewis and Kretsch-
mer [9,10].

To illustrate these concepts we randomly selected the zeros from the zero pairs of a 64-element
Huffman code having a sidelobe voltage of -0.1 V. This was done with a computer random-number
generator having equally likely plus and minus ones which were associated with a zero location inside or
outside the unit circle. From these zero locations, the input waveform was determined as previously
described. The amplitude distribution of this waveform is shown in Figs. 4(a) and 4(b) for different
trials. The efficiencies of these waveforms are 11% and 16%. Using the method of imparting a large
FM content to the waveform resulted in the waveform shown in Fig. 4(c) whose efficiency is 39%.
The waveforms shown in Fig. 4 were normalized to have a compressed pulse peak equal to 64.

Ackroyd noted that the efficiency could be improved by varying the design sidelobe level. We
confirmed this and in addition found that the value of C0 in the desired characteristic given by Eq. (14)
could be altered to result in a different zero selection and hence a different efficiency. The variation of
the efficiency with the initial phase and the sidelobe level is shown in Fig. 5 for the 64-element Huff-
man code.

COMPARISON OF HUFFMAN CODES WITH OTHER CODES

We first describe and compare the 64-element Huffman code with a 64-element polyphase P4
code and a 63-element pseudorandom shift-register binary code in terms of doppler sensitivity. Next,
the sensitivity of the Huffman-code sidelobes due to tolerance errors and due to finite quantization lev-
els is presented.

The ambiguity function of an efficient 64-element Huffman code (as shown in Fig. 4(c)) having
an initial phase angle of -ir and a sidelobe level of -56 dB is shown in Fig. 6. The delay is normalized
to the uncompressed pulse length T, and the y-axis is the product of the doppler frequency and T.
This product can also be interpreted as the number of 2ir phase shifts across the uncompressed pulse
due to doppler. A blowup of this figure is shown in Fig. 7 where the product of the doppler frequency
and T ranges from 0 to 1. It is seen in Figs. 6 and 7 that the sidelobes of the Huffman code grow
rapidly with an increase in doppler. For comparison we show the ambiguity function of a P4 code in

5
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Fig. 5 - Variation of 64-element Huffman-coded waveform efficiency with the design
sidelobe level and the initial phase angle of the FM pulse characteristic
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Fig. 6 - Partial ambiguity surface for an efficient
64-element Huffman-coded waveform
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1. 

Fig. 7 - Expanded ambiguity surface for an efficient
64-element Huffman-coded waveform

Fig 8. This code, which is derived from a linear chirp signal, is seen to be relatively insensitive to
doppler. Figures 9 and 10 show the ambiguity function of a 63-element pseudorandom binary shift-
register code which has a thumbtack ambiguity function. Although this is an excellent waveform for
simultaneous determination of range and doppler, it has a relatively poor doppler response. The
response in doppler for 0-delay is approximately a (sin x/x) 2 response with the first zero occurring at a
normalized doppler shift of 1.0.

*% F-

A O

Fig. 8 - Partial ambiguity surface for a 64-element
P4 polyphase-coded waveform
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Fig. 9 - Partial ambiguity surface for a 63-element binary
shift-register code

Fig. 10 - Expanded ambiguity surface for a 63-element
binary shift-register code

In Fig. 11 we show a cut through the ambiguity surfaces of the three codes at a normalized

doppler shift of 0.25, corresponding to a total phase shift across the uncompressed waveform of ir/2
rad. The sample number in the abscissa corresponds to the number of range cells or time intervals
whose duration is equal to the subpulse width. By comparing Figs. 11 (a) and 11 (b) it is seen that for

this doppler, the peak sidelobe of the Huffman code is approximately equal to that of the P4 code at

approximately -25 dB. For higher doppler, the Huffman-peak sidelobe is larger than the P4 code. The
peak sidelobes of the binary code shown in Fig. 11 (c) are approximately -19 dB and are not very sensi-

tive to doppler. As described above however, the peak signal in the compressed binary pulse degrades
rapidly with increasing doppler as a (sin x/x) 2 function as shown in Figs. 9 and 10.

9
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Another cause of degradation of the Huffman code is errors in generating and compressing the
code. The zero sidelobe level, except for the end sidelobes, is an idealization which is not achievable in
practice. To assess the sensitivity of the Huffman code to errors, two types of errors were investigated.
The first is a random error due to tolerances and the second is due to AID quantization.

In the first case, an independent random error is added to the inphase I and quadrature Q nomi-
nal values for each subpulse. The error is determined from a uniformly distributed sample having a
maximum error of ± 5% of the nominal value of I or Q. The new I and Q values for each subpulse,
denoted by primes, are given by

I'= I(1 + e,)

Q'= Q(1 + eq),

where ej and eq are independent samples from a uniform probability distribution over the range of
+0.05. An error-free compressed pulse for the efficient 64-element Huffman code is shown in Fig.
12(a), and in Fig. 12(b) a realization is shown for a maximum 5% error imposed on the transmit
waveform. It is assumed here that the matched-filter is matched to the transmitted imperfect Huffman
waveform. It is seen that the peak sidelobe levels increase to -40 dB over the region where all the
sidelobes are zero in the error-free case. An error-free compressed P4 code is shown in Fig. 13(a), and
the compressed pulse containing a maximum random error of ±5% is shown in Fig. 13(b). This
compressed pulse is seen to be only slightly different from the error-free compressed pulse. Similar
results were obtained when the errors were only one way, that is, on either transmit or in the receiver
filter.

The effect of quantization errors incurred with the utilization of AID converters was also simu-
lated for the -36 and -56 dB sidelobe level cases. The results are shown in Fig. 14 for the two-way
average and peak sidelobe level vs the number of bits, including the sign bit. From this figure one sees
that, as expected, it requires more bits to achieve lower sidelobe levels. Again, the results were nearly
the same for the case of a one-way error.

CD I

CD~~~~~~~~~~~~~~~~~~~C

C:)
C)

C)~ ~ ~ ~ ~~~~~~~~C
CD C)

CD 0~~~~~~~~~D

o 16 ~32 48 64 80 96 112 128 0 1 6 32 48 64 80 96 112 128

SAMPLE NUMBER SAMPLE NUMBER

(a) no errors (b) uniformly distributed random error on each subpulse I
and Q values

Fig. 12 -Zero-doppler compressed pulse for an efficient 64-element Huffman code
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SUMMARY AND CONCLUSIONS

Relationships of the z-plane zeros of pulse compression waveforms have been reviewed. It was
shown how a waveform compressed with a matched filter has an output pulse whose z-plane zeros
occur in pairs occurring at the same angle and which are reciprocally related in amplitude. For an N-
element input waveform, there are N-I such zero pairs. A synthesis procedure then consists of select-
ing one zero from each pair. The remaining zeros then correspond to the zeros of the matched filter.

In general, determination of the zeros of the compressed pulse requires factorization of a polyno-
mial of degree 2(N-1) in z. However, for the idealized Huffman-coded waveform, the compressed
pulse consists of only the central peak and zero sidelobes except for those at either end of the
compressed pulse. The consequence is that the z-plane polynomial is quadratic in the variable z-(N-1)

so that it can be easily factored. The result is that the zeros lie on two circles, which are reciprocal in
amplitude and whose radii depend on the specified sidelobe level, and these zeros also lie on radial
lines at regularly spaced intervals of 2ir/(N-I) rad. Random selection of the zeros of the compressed
pulse to determine the input waveform usually results in an inefficient waveform- in terms of the
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of the waveform energy compared to the maximum that could be transmitted. Techniques for improv-
ing the efficiency by imparting a large FM content of the waveform were discussed. These methods,
based on the work of Schroeder and Ackroyd, were shown to result in a much more efficient
waveform. Ackroyd suggested an additional improvement in the waveform efficiency by varying the
specified sidelobe design level for a given fixed initial phase angle. We have shown that the efficiency
could be further improved by also varying the initial phase angle of the FM-phase characteristic used in
determining the zero locations.

The effects of doppler shifts were investigated and it was shown that the zero sidelobes of the
Huffman-compressed-pulse increase rapidly with doppler. Ambiguity diagrams were presented for the
exemplar 64-element Huffman code, a P4 polyphase code, and a binary shift-register code. Above a
normalized doppler shift of approximately 0.25, corresponding to a total phase shift across the
uncompressed pulse of ir/2 rad, the peak sidelobes of the 64-element Huffman code exceed those of
the 64-element polyphase code. A doppler shift of 0.25 corresponds, for example, to a Mach 1.7 target
for a 1 GHz radar having an uncompressed pulse width equal to 64 As. The sidelobes of the binary
code are higher than those of the P4 code and they, as well as those of the P4 code, remain relatively
constant with increasing doppler shift. However, the central peak of the binary-coded waveform falls
off as a (sin irfT/lrfT) 2 function with the normalized doppler shift fT. For higher pulse compression
ratios, it is expected that the sidelobes of the Huffman code would exceed those of the polyphase code
for smaller fT because of the lower sidelobes of the P4 code.

The sensitivity of the 64-element Huffman code to random errors and to AID quantization errors
was investigated. It was found that the idealized zero-level sidelobes increased to approximately the
-40 dB level in the presence of independent random errors which were a maximum of ±5% of the
nominal I and Q channel values for each subpulse. An investigation of the effects of the number of
bits used in an AID converter showed that,, to maintain the low sidelobe levels, it is necessary to utilize
additional bits. The sidelobe level was found to diminish approximately 7 dB per additional bit.

In conclusion, it is found that the Huffman codes, which are theoretically idealized waveforms in
terms of zero sidelobes except for the end sidelobes, degrade rapidly in the presence of doppler shifts.
The sidelobes also degrade in the presence of tolerance errors and an insufficient number of AID bits.
The efficiency factor of the Huffman codes may also be an important consideration. For example, for a
Huffman code having an efficiency of 50%, there is an approximately 15% reduction in the detection
range of the radar.

In view of the foregoing comments, the Huffman waveforms appear to have the most appeal in
sufficiently low, or compensated doppler applications where tow sidelobes are achievable. The tradeoffs
are generally a reduction in range performance, depending on the code efficiency, increased transmitter
complexity, and providing the necessary number of AID bits to support the sidelobe levels. Depending
on the code and radar, this number of bits may not need to be greater than what is normally required
for proper radar operation.
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